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tational time. In [21] Verwer et al. use a sparse version of
VODE. Their treatment of sparsity is based on the netlibImplicit integrators are very useful in efficiently solving stiff sys-

tems of ODEs arising from atmospheric chemistry kinetics, provided package SLAP.
that they are modified to take full advantage of the structure of the In this paper we develop a systematic way of exploiting
problem. A systematic way of treating sparsity for reducing the sparsity when integrating atmospheric chemistry equa-
linear algebra cost is presented. Q 1996 Academic Press, Inc.

tions. Unlike [13], our target is not a specialized architec-
ture; we concentrate on developing machine-independent
algorithms. In section 3 we discuss and evaluate reordering1. INTRODUCTION
techniques that lead to minimal fill-in during LU decompo-
sition. We then (Section 4.3) test various linear systemIt is well known that the equations arising from chemical
solvers, in particular showing that the chosen routine iskinetics comprise a system of stiff ordinary differential
twice as fast as the one used in [21]; finally (Section 5)equations (ODEs). For solving these equations numeri-
we demonstrate how the chosen solver can improve thecally, implicit integrators with infinite stability regions are
efficiency of some state-of-the-art stiff ODE solvers. Theselikely to work with relatively large step sizes when the
ideas are tested on two comprehensive chemical mecha-accuracy requirements are not too stringent. However, at
nisms used to study stratospheric and tropospheric chemis-each integration step, a nonlinear system of equations has
try; both models are described in Section 4.6.to be solved. This involves the repeated evaluation of

Jacobians and the solution of linear algebraic systems of
2. ABOUT PIVOTINGdimension n, the number of species considered in the

model.
Implicit algorithms advance the numerical solution ofGeneral stiff ODE solvers do not take advantage of

differential equations one step in time by solving a nonlin-the sparsity pattern of the Jacobian, and the number of
ear system of equations. This is done by using a (modified)arithmetic operations required for the numerical solution
Newton method, which results in solving a sequence ofof the corresponding linear system is proportional to n3.
linear systems. The numerical solution of the linear systemThis is one of the reasons why general stiff ODE solvers are
is usually done by a direct method, i.e., by employing anot very efficient for integration of chemical rate equations
(LU) factorization. The matrix that is to be factorized inwith a moderate to large number of species. A comparison
implicit solvers (sometimes called ‘‘prediction matrix’’) isof the exactness and time efficiency of different integrators
of the formcan be found in the paper of Shieh et al. [18].

On the other hand, exploitation of sparsity may signifi-
P 5 I 2 h ? c ? J,cantly reduce the linear algebra overhead. Recently, sev-

eral authors showed promising results with sparse BDF where I is the identity matrix, J is an approximation to the
codes in atmospheric chemistry models. In [13] Jacobson Jacobian, h is the attempted step-size, and c is a coefficient
and Turco describe SMVGEAR—a BDF code that uses vec- dependent on the method. This form of the prediction
torization around the grid cell-dimension. Treatment of matrix holds for multistep schemes and, after an equiva-
sparsity is an essential ingredient in decreasing the compu- lence transformation, for Runge–Kutta methods as well.

Several authors [6, 13, 21] report good results with non-
1 sandu@cgrer.uiowa.edu.

pivoting sparse linear algebra solvers when integrating at-2 potra@math.uiowa.edu.
mospheric chemistry equations. This saves computational3 gcarmich@cgrer.uiowa.edu.

4 vdamian@cgrer.uiowa.edu. time. Several arguments sustain this practice:
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• The presence of I ensures that diagonal elements are ments and hence give the possibility of factorization with-
out pivoting. Such symmetric permutations can be viewednot structurally zero;
as a rearrangement (renumbering) of the species involved• If a pivotal element is zero or very small, then the step
in the chemical mechanism (if the initial ordering wassize is rejected and a new P is constructed, with a smaller
[1, ..., n]T, the new ordering will be P ? [1, ..., n]T). Weh. P is diagonally dominant for all h sufficiently small, say
further restrict the class of possible permutations to those0 # h # h0, so that, at least in the limit case, no pivoting
given by a global strategy; more exactly, we want to com-is required. We should point out here that the restriction
pute the permutation off-line, in the preprocessing stageon step size needed for diagonal dominance may be as
(hence considering only the structure of the matrix andsevere as the stability restriction imposed by an explicit
not particular numerical entries). The same permutationmethod.
is then used throughout the computation, thus reducing

• Reordering the species (see below) is equivalent to
the workload associated with sparse data structure manipu-

performing a diagonal pivoting; of course, this does not
lation.

take into account numerical values, but it helps, because
The following strategies were considered:

a multiplier with absolute value greater than one will lead
1. Intuitive. A reordering based on the reactivity ofto an error amplification, and this error will corrupt each

the species. This requires specific knowledge regarding therow processed at that stage. Since the columns with less
chemical mechanism and has been applied successfully inelements come first, fewer row operations are needed in
[19]. Since our aim here is to minimize the fill-in, we or-the initial stages; hence the error introduced by a very
dered the species decreasingly after their characteristic life-small pivot is not greatly amplified.
time (the inverse of average destruction term, the average

• A solution of the linear system corrupted by numerical being taken over the two day integration interval);
errors (due to nonpivoting) may be thought of as the exact

2. Row. The rows of P are sorted in increasing order,solution of a system with inexact Jacobian. The conver-
according to the number of their nonzero elements. If twogence of Newton iterations may not be affected by this
or more rows have the same number of nonzero elements,approximation. This argument is, of course, not valid with
their initial relative ordering is preserved.Rosenbrock methods.

3. Column. Same strategy as above, but applied on
Theoretically, because of nonpivoting, the matrix P may columns.

be falsely ‘‘detected’’ as singular, and unnecessary step-
4. RowpCol. For each diagonal element k, the valuesize rejections may occur. Moreover, even if the step size is

a(k) 5 r(k) ? c(k) is computed, where r(k) is the numberaccepted, more iterations per Newton step may be needed
of nonzero elements in row k and c(k) is the number ofbecause of the increased errors in the solution of linear
nonzero elements in column k. The permutation P is suchsystems. Numerical experience (ours and that of the au-
that the diagonal elements of P ? P ? PT are sorted in in-thors cited earlier) shows that the above phenomena are
creasing order with a(k).not that important in practice.

5. Diagonal Markowitz. The algorithm emulates the
LU decomposition (say, the column-oriented version) of3. SPECIES ORDERING
the initial matrix P. Consider that at the current step, the
first k 2 1 columns have been processed.The sparsity structure of the matrix P is given by the

sparsity structure of the Jacobian J, which in its turn is • Step k. To minimize the fill-in, look at the diagonal
determined by the chemical interactions. Thus, for a given elements of the active submatrix P(k : n, k : n) and choose
chemical system, the sparsity structure is constant and can the one with the lowest b(k) 5 (r(k) 2 1) ? (c(k) 2 1),
be predetermined. More exactly, a maximal sparsity struc- where r(k), c(k) are relative to the submatrix P(k : n, k : n).
ture can be predetermined; some entries in J can become If the diagonal element found is (i, i), permute rows k and
zero during computation, as is the case with the photolysis i and columns k and i. The procedure is equivalent to a
terms during night. diagonal pivoting; unlike the standard Markowitz rule, this

To take full advantage of the sparse structure of P, we diagonal strategy does not use numerical values; hence, it
need to permute its rows and columns such that the sparsity is a global strategy.
of the L and U factors is maximized. Among different • Step k 1 As. Do a symbolic decomposition step on
possible strategies, we look at symmetric permutations: column k, i.e. emulate the kth step of a real decomposition,

counting the fill-in (zero elements becoming nonzero) in
P r P ? P ? PT 5 I 2 h ? c ? P ? J ? PT P(k : n, k : n).

• Step k 1 1. Repeat step k with the new active sub-
matrix P(k 1 1 : n, k 1 1 : n).which preserve the presence of ones in the diagonal ele-
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TABLE I
b 5 P ? (1, ..., 1)T.

Resulting Fill-Ins (Number of Nonzeros after an In-Place
Factorization) for the Different Reorderings Analyzed The sparsity pattern of P was evaluated off-line, and the

data structures needed by each tested solver were gener-# of nonzeros in LU
ated using a small MATLAB routine. Each of the routines

Strategy Model 1 Model 2 described in Section 4.3 received the linear system in its
own input format. For all the tests in the next subsection,

Initial 243 673 the exact solution was recovered within an error of 1029.
Intuitive 385 2900
Row 287 810

4.2. Test MethodologyColumn 278 806
Row p Col 275 789 Usually, the solution of a sparse linear system is done
Diag Markowitz 275 768

in three distinct steps: (a) analysis of sparsity pattern andLocal min fill-in 274 761
preparation of data structures; (b) sparse LU decomposi-

Note. The test problems are discussed in Section 4.6. tion, using the information gathered at the first step; and
(c) solution of resulting pair of triangular systems.

The following particularities appear when solving ODEs
arising from atmospheric chemistry:A nice feature with this algorithm is that, as a by-product,

one obtains the sparsity pattern of the L and U factors. • The sparsity structure of the Jacobian (and hence, of
the prediction matrix) is given by the interactions among

6. Local minimum fill-in. Resembles the Markowitz
chemical species and hence is constant on large time inter-

strategy, except that, at each step, the diagonal element
vals. This structure may be sparser during nighttime when

(i, i) is chosen such that the fill-in of P(k : n, k : n) after
photolysis reactions shut down; since it is cumbersome to

performing step k of elimination is minimized. This strat-
either work with different sparsity structures on different

egy is much more expensive than Markowitz, since at stage
intervals or update this structure periodically, we take the

k, there are k (symbolic) factorizations of dimension
simpler approach [21] of moving the analysis step off-line,

(n 2 k)2 to be performed. The gain, compared to the
computing a (maximal) sparsity structure, and working

diagonal Markowitz strategy, is minimal.
with it throughout the integration time interval.

The results for the test problems described in Section • Because chord iterations are used when solving the
4.6 are presented in Table I. We report the number of nonlinear system, the same prediction matrix is used for
nonzeros resulting after reordering and an in-place LU more than one iteration. Hence, to each LU decomposition
factorization. The real target of reordering is to minimize (step (b)) correspond several calls to the substitution rou-
this fill-in. The results show that all the considered strate- tine (step (c)). For example, with VODE on atmospheric
gies (except the ‘‘Intuitive’’ mode) perform similarly. Inter- chemistry problems, the number of calls is about six or
estingly, the species considered most reactive appear last seven.
in the ‘‘pure numerical’’ re-orderings as well. For example,

To emulate these characteristics, the codes were bench-for model 2 the last species (in reversed column order)
marked as follows: the ANALYSE routine (correspondingare: OH, NO, HO2, NO2, NO3, O3, HCHO, ALD2, ....
to step (a)) was called once, in the beginning; then theConclusion. The diagonal Markowitz criterion has a
DEC and SOL (corresponding to phases (b) and (c), re-slight advantage over the others, so we recommend its use.
spectively) were called 105 times. Each call to DEC was
followed by 0 and by 7 calls to SOL (for timing DEC only4. AN EVALUATION OF DIFFERENT
and for simulating the calls made by an implicit integrator).SPARSE SUBROUTINES

4.3. Short Description of Linear System Solvers Tested4.1. Test Systems
4.3.1. Off-the-Shelf SolversIn order to evaluate the performance of different sparse

solvers, we employed two test linear systems based on the 1. LINPACK. The code is available on netlib; see [7].
chemical problems described in Section 4.6. One numerical LINPACK uses column-oriented algorithms to increase
value of the Jacobian (corresponding to noon-time, first efficiency by preserving locality of reference. Here we test
day) was computed. The test systems correspond to the routines dgefa and dgesl. LINPACK–U is
c ? h 5 1 and the exact solution is a vector of ones: LINPACK, acting on the unordered matrix. More exactly,

the order of the species is the reverse of that resulting
from the Markowitz diagonal criterion. As a consequence,P 5 I 2 J,



104 SANDU ET AL.

the LU factors are almost full. LINPACK–O is LINPACK affected by the large number of indirect addressings in the
inner loops. In order to use the pair dsilus and dslui2acting on the ordered matrix. Without any further interven-

tion, other than species reordering, the decomposition time as an exact (complete) solver, we predicted off-line the
sparsity structure of the L and U factors; then we ‘‘ex-may be cut down significantly, as seen in Tables II and III.

This is explained by the sparsity of L. tended’’ the matrix A to this structure, explicitly inserting
zeros on the fill-in positions. Two versions (the original2. LAPACK. The code is available on netlib; see [1].
and a modified one) were considered: SLAP–1 representsLAPACK is a collection of Fortran subroutines that super-
the routines dsilus and dslui2 without any modifica-sedes both LINPACK and EISPACK. Tested routines:
tion. SLAP–2 represents the routine dsilus with the fol-dgetrf and dgetrs. Results for both the ordered and
lowing modification: the ANALYSE phase (correspondingthe unordered system are given.
to first part of dsilus) is done once (off-line); the routine

3. HARWELL MA28. The code, available on netlib, is receives directly A (copied into L, D, and U), as well as
written by I. S. Duff, Computing and Information Systems the sparsity pointers (IL, JL, etc.). As a consequence, a
Department, Rutherford Appleton Laboratory, and J. K. substantial improvement (as compared to SLAP–1) was
Reid. MA28 is a Markowitz general-purpose linear algebra obtained.
package. Tests with the Harwell package were made by

The vendor BLAS version was used with all the routinescalling ma28ad once and then calling the sequence
that required it, except for SuperLU (where some incom-ma28bd, ma28cd 105 times.
patibilities appeared and we used the provided BLAS4. Y12M of Z. Zlatev, University of Copenhagen, is a
library).general package for sparse systems of linear equations

and is also available on netlib. The routines used: y12mb
4.3.2. Tailored Solvers

(analyse), y12mc (decompose), y12md (solve).
Since the main idea is to do the analysis step off-line5. SuperLU, written by J. W. Demmel, J. R. Gilbert

and then to use the resulting data structures throughoutS. Eisenstat, X. S. Li, J. Liu, and J. Teo, uses a supernodal
the computation, we consider several implementations ofapproach to sparse partial pivoting. Routines used in tests:
Gaussian elimination without pivoting.dgstrf (prefact 5 ‘‘Y’’ first call, then with refactorization

option) for factorization, and dgstrs for solution of trian- 1. Mod–Gauss–1 is a modified (column-oriented)
gular systems. Gauss algorithm. Its distinctive feature is that in order to

reduce the number of indirect addressings, we work di-6. UMFPACK2 of T. A. Davis, Computer and Infor-
rectly on the square matrix, rather than on a compressedmation Science and Engineering Department, University
row or column or on a linked list format. The sparsityof Florida, and I. S. Duff. Version 2.0 from September 13,
patterns of L and U are computed in the preprocessing1995 is available on netlib. UMFPACK2 uses an unsym-
stage. All the algebraic manipulations are done in a sparsemetric-pattern multifrontal approach (wherefrom it de-
mode. The factorization (decomposition) is done in-place,rives its name). udm2fa was called once, then udm2rf
and the resulting ‘‘triangular’’ L and U factors are used.and udm2sowere called 105 times. Different combinations
This lead to a loss in performance in the SOLVE phase,of input parameters were tested (with/without permutation
so that the following hybrid data structure was considered:to block triangular form, with/without preferring diagonal

pivots, with different number of columns to be examined 2. Mod–Gauss–2 uses the full representation in the
DECOMPOSITION phase, but then it copies the nonzeroduring the pivot search, with/without iterative refinement).

The timings correspond to the default values of param- elements into (the vectors) L and U. Then the SOLVE
phase uses a sparse data structure. This results in a smalleters.
overhead when DECOMPOSE-ing, and a large speedup7. SLAP was written by A. Greenbaum, Courant Insti-
when solving. This version is more efficient when a largetute, and M. K. Seager, Lawrence Livermore National Lab-
number of SOLVEs follow each decomposition.oratory, and is available on netlib. The following routines

were used: dsilus (for performing an in-place LDU de- 3. DOOLITTLE. This routine uses a row-oriented
Doolittle factorization (see [8] for more details on thiscomposition), and dslui2 (for performing the back and

forward substitutions). dsilus and dslui2 were de- algorithm). Line k in L is computed, followed by the com-
putation of line k in U. The initial matrix is stored insigned to perform an incomplete LDU decomposition of a

sparse matrix, thus providing a preconditioner for iterative compressed row format; in addition to the vector of
pointers IROW (IROW(k) indicates the beginning of linemethods. No permutations are performed, and no fill-in is

considered (i.e., only the elements in L and U that corre- k) there is a vector of pointers IDIAG (IDIAG(k) is the
position of kth diagonal element). The presence of bothspond to a nonzero position in A are computed). This

feature makes the code fast. However, its performance is IROW and IDIAG enables the code to perform an in-
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TABLE II solution (1, ..., 1)T was recovered within an error of 1029.
Several remarks:Model A: Times per Call (1026 s) for Different Solvers on a

HP-UX A 9000/735 with 160-M RAM Machine • The new solvers SuperLU and UMFPACK are de-
signed for very large systems of equations (several thou-Model A
sands by several thousands); their use is not justified for

Routine DEC SOL 1D 1 7S small to moderate size problems, as those arising from
present-day atmospheric chemistry models.

LINPACK–U 714 73 1225
• General purpose solvers like Harwell’s MA packageLINPACK–O 411 73 922

and Y12M have a significant overhead associated with piv-
LAPACK–U 694 102 1408 oting and handling more general data structures. Their
LAPACK–O 341 102 1055 results are reliable; again, this does not seem to pay for

small systems (at most several hundreds by several hun-
HARWELL 393 39 666

dreds) arising from atmospheric chemistry kinetics. How-
ever, the reasonable performance of MA28 gives us theY12 832 28 1028
hint that a Markowitz code (working with simplified data

UMFPACK2 900 73 1411 structures) may be well suited for the application.

• Modified Gauss. According to the results from TablesSuperLU 948 95 1613
II and III the strategy of performing sparse operations on

SLAP–1 432 25 607 the full structure seems to work well.
SLAP–2 263 25 438 One obvious disadvantage of working with the whole

matrix is the increase in the required amount of memory.Mod–Gauss–1 205 55 590
More tests on different machines show a dramatic degrada-Mod–Gauss–2 228 26 410

DOOLITTLE–1 135 29 338
DOOLITTLE–2 135 10 205 TABLE III

Model B: Times per Call (1026 s) for Different Solvers on aNote. ‘‘DEC’’ is the time for one decomposition, ‘‘SOL’’ is the time
for one backward–forward substitution, and ‘‘1D 1 7S’’ the time for one HP-UX A 9000/735 with 160-M RAM Machine
decomposition, followed by seven backward–forward substitutions.

Model B

Routine DEC SOL 1D 1 7S

place LU decomposition, IROW being associated with the
LINPACK–U 6870 355 9355beginning of lines in L and IDIAG with the beginning
LINPACK–O 2240 355 4725

of lines in U. No pivoting is performed, and no fill-in is
considered. Thus, the initial matrix A has to be ‘‘extended,’’ LAPACK–U 8000 493 11451

LAPACK–O 1900 493 5351in the sense that the positions of fill-ins are computed
off-line; then explicit zero entries are considered in these

HARWELL 1150 103 1871positions. Two versions were tested:

Y12 2880 82 3454• DOOLITTLE–1. The SOLVE phase works with the
sparse data structure resulting from LU decomposition.

UMFPACK2 2720 176 3952
• DOOLITTLE–2. In order to completely avoid indi-

SuperLU 2660 246 4382rect addressing, a loop-free code is generated (via the KPP
symbolic preprocessor) for the SOLVE phase only.

SLAP–1 2030 67 2499
SLAP–2 1100 67 1569

4.4. Results
Mod–Gauss–1 730 138 1696Timing for solving the systems resulting from our test
Mod–Gauss–2 840 67 1309

problems with the above routines are presented in Tables
II and III. All the routines solved the linear system DOOLITTLE–1 440 93 1091

DOOLITTLE–2 440 30 650

P ? x 5 (I 2 h ? c ? Jac) ? x 5 b
Note. ‘‘DEC’’ is the time for one decomposition, ‘‘SOL’’ the time for

one backward–forward substitution, and ‘‘1D 1 7S’’ the time for one
decomposition, followed by seven backward–forward substitutions.with h ? c 5 1 and b 5 P ? (1, ..., 1)T. In all cases the exact
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TABLE IVtion in performance if the amount of RAM is restricted.
For example, Mod–Gauss on the 160-M RAM machine Initial Concentrations for Stratospheric Model A
(see Tables II, III), performs comparable with MA28.

Species Initial Species InitialHowever, on a 64-M RAM machine, it is two times slower
name (ppb) name (ppb)than Harwell’s MA. This may be explained as follows: the

elements of the matrix are addressed directly, but, because
O 8.15 O3 656

of sparsity, successive references require big jumps in the NO 10.7 NO2 2.75
n p n vector (the internal representation of the whole HNO3 0.35 H2O 6100

OH 0.2 HO2 0.14matrix). Thus, the references are no longer local, and the
H2 370 CH4 490amount of cache memory influences very much the perfor-
CO 20 ClO 1mance. HCl 2.15 HOCl 0.22

• Doolittle. This has the advantage of working on a
uniform representation of the matrix (one vector of non-
zero elements, unlike SLAP, which requires one vector for 4.6. Test Problems
L, one for U, and one for D). Each row is decompressed

TEST PROBLEM A. This corresponds to a stratosphericbefore, and recompressed again after, processing (see [8]).
(altitude 40 km) box model. It is available at NASA ftpThis moves most of the indirect addressing from the O(n2)
site (contact Douglas E. Kinnison, kinnison1@llnl.gov).loop to two O(n) loops. The technique of generating loop-
There are 38 species involved in 84 thermal and 25 pho-free code for the SOLVE phase (as with Doolittle–2)
tolytic reactions at the following physical and geographicalspeeds up considerably the code (in our test problem, a
conditions: latitude 65N, temperature 241.43 K, pressurefactor of 3 is gained in the SOLVE phase). It has the
2.7 hPa, air density 8.12 3 1016 molecules/cm3. This mecha-disadvantage of requiring specialized preprocessing soft-
nism and the rate constants have been used in the NASAware (in this study we generated the code with the symbolic
HSRP/AESA stratospheric chemistry model intercompar-preprocessor KPP, but the user may write a very simple
isons. The values of initial concentrations for the mostC routine for this purpose).
important species are given in Table IV.A loop-free code for the DECOMPOSE phase may, in

principle, substantially improve the timing; on the other TEST PROBLEM B. This employs the chemical mecha-
hand, this solution would significantly increase the re- nism that is presently used in the STEM-II regional-scale
sulting code, and memory problems associated with that transport/chemistry/removal model (Carmichael et al. [4]),
may counterbalance the speed gain. consisting of 86 chemical species involved in 142 thermal

and 36 photolytic reactions. The mechanism, based on the
Conclusion. Doolittle with a loop-free code generated work of Lurmann et al. [14] and Atkinson et al. [2], is

for phase (c) seems to be the fastest routine available for representative of those presently being used in the study
atmospheric chemistry applications (this conclusion by no of chemically perturbed environments. It represents the
means applies to general linear systems). major features of the photochemical oxidant cycle in the

troposphere and can be used to study the chemistry of
both highly polluted (e.g., near urban centers) and remote

4.5. Integrators Used
(e.g., marine) environments. The photochemical oxidant
cycle is driven by solar energy and involves nitrogen oxides,Since the off-line estimation has shown Doolittle–2 to

be the most promising sparse solver, we used it in all the reactive hydrocarbons, sulfur oxides, and water vapor. The
chemistry also involves naturally occurring species, as wellnumerical experiments which will be reported here. Three

off-the-shelf integrators were used in the numerical experi- as those produced by anthropogenic activities. The model
was used to simulate urban conditions at ground level,ments in both original and modified (sparse) versions. Each

code is based on a different numerical scheme: temperature of 288 K, and an air density of 2.55 3 1019

molecules/cm3. The values of initial concentrations and the
values of hourly emissions are given in Table V. These• VODE, the variable coefficient ODE solver of Hind-

marsch, Brown, and Byrne, a BDF code. For details see [3]. emissions were performed in equal quantities at the begin-
ning of each restart time interval. The chemical simulations• SDIRK4, written by Hairer and Wanner, part of [10],
were run for 5 days.is based on a stiffly accurate, five-stage, order-4, singly

diagonally implicit Runge–Kutta method. 5. NUMERICAL RESULTS
• RODAS, written by Hairer and Wanner, part of [10], is

based on a stiffly accurate Rosenbrock method of order 4 Each of the modified codes was tested for different toler-
ances and different restart intervals. In this section thewith six stages.



EFFICIENT FULLY IMPLICIT METHODS 107

TABLE V spheric chemistry applications, values of a 5 100 mlc/cm3

or less can be assumed to correspond to the completeInitial Concentrations and Hourly Emissions for
disappearance of the species.Tropospheric Model B

In addition to presenting the results for sparse implicit
Species Initial Emission integrators, we perform a comparison with the widely used
name (ppb) (ppb/h) algorithms QSSA (see [11]), CHEMEQ (see [22]) and the

sparse BDF code LSODES (see [12]):NO 50 1
NO2 20 0.2 • QSSA is used with a dynamic partitioning of the species
HONO 1 0

into slow, fast, and normal, depending on the step-size h,O3 100 0
and the species life-time ti 5 1/Di.H2O2 1 0

CO 300 0
—If ti . 100 ? h the species is slow and is integratedHCHO 10 0.2

with forward Euler formula;Aldehyde 10 0.2
PAN 1 0 —If ti , 0.1 ? h the species is fast and is considered
Alkans 50 2 at steady state;
Alkens 10 1
Ethene 10 0.2 —Otherwise, exponential QSSA formula is applied.
Aromatics 20 4

• CHEMEQ is used as specified in [17]:Isoprene 10 1.0

—If ti , 0.2 ? h the species is fast and is considered
at steady state;

—If ti . 5 ? h the species is slow and is integrated with
results for the test problems are compared to the solutions the nonstiff CHEMEQ formula;
computed by the code RADAU5 of Hairer and Wanner

—For all other species the CHEMEQ stiff formula is[10] with very tight tolerances rtol 5 10212 and atol 5 10210

used.(mlc/cm3).
As a measure of the accuracy we have employed the • LSODES is the sparse version of the popular BDF code

number of accurate digits (NAD) computed as LSODE. LSODE and LSODES are often used to solve the
atmospheric chemical kinetics equations (see [17]). The
code was used with MF 5 121, i.e., the analytical JacobianNAD 5

1
N ON

i51
NADi , NADi 5 2log10 (ERRi),

with an inner estimation of the sparsity structure.

For implicit integrators, the same parameter setting for
where N is the number of species, ERRi is a measure of both sparse and off-the-shelf versions was used. The accu-
the relative error in the numerical solution of species i, racy of sparse codes is (despite nonpivoting) very similar
and NADi is the corresponding number of accurate digits. to that of the original ones.
With the reference solution y(t) (computed by RADAU5) Timings and accuracies for the original codes, the sparse
and the numerical solution ŷ(t) at hand at discrete times versions, and the explicit algorithms are presented in Figs.
htj 5 t0 1 j ? Dt, 0 # j # Mj the measure of the relative 1 (test problem A) and 2 (test problem B). The numerical
error is computed as accuracy (expressed as the number of accurate digits) is

plotted versus the CPU time (in seconds, as given by the
I i 5 h0 # j # M : uyi(tj)u $ aj, UNIX routine timex). The important points are:

• In Figs. 1 and 2 the BDF codes are represented by
ERRi 5 ! 1

u I iu
?O

j[Ii

Uyi(tj) 2 ŷi(tj)
yi(tj)

U2
. solid lines, Runge–Kutta by dashed lines, Rosenbrock by

dash–dots, and explicit methods by dotted curves.

• The slopes of these work-precision diagrams measureThe threshold factor used here is a 5 100 mlc/cm3. If the
the orders of convergence of different methods; implicitset Ii is empty, the value of ERRi is neglected. The purpose
integrators used here have higher convergence orders;of considering the above-defined error measure, instead
hence they display higher slopes compared to QSSA andof the root mean square norm (a 5 0 mlc/cm3) is to suppress
CHEMEQ. For less accuracy, the latter are faster, while forfrom the error calculation the times where the absolute
higher accuracy the former become preferable. Thus, whenvalue of the concentration falls below a 5 100 mlc/cm3;
more accuracy is desired, the higher convergence order ofthese values are very likely corrupted and the correspond-
the implicit methods used here pays off.ing large relative errors say nothing about the general com-

putational accuracy. From a physical standpoint, for atmo- • To compare the performance of different methods on
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plicit codes are not supplied analytical Jacobians their per-
formance further decreases.

• Decreasing the transport step and increasing the di-
mension of the chemical mechanism results in a relative
advantage for special explicit methods. However, even with
a restart time of 15 min and fairly large chemical mecha-
nisms the standard integrators endowed with the above
presented sparse linear algebra techniques are competitive
with CHEMEQ and QSSA, when the requested computational
accuracy is one significant digit or more.

• Each implicit code traces a pair of almost parallel lines
in the diagrams, one for the off-the-shelf version and one
for the sparse version; roughly speaking, these lines differ
by a translation along the time axis (which corresponds to
the speedup). The line parallelism shows that both code
versions perform similarly in terms of accuracy; in particu-
lar, the accuracy does not seem to be affected by nonpivot-
ing. This experimental conclusion is in agreement with the
findings of other authors (see [6, 13, 21]).

FIG. 1. Model A. Work-precision diagram. A restart was carried each
1 h (upper diagram) and each 15 min (lower diagram). Sparse VODE

(solid) VODE (solid with ‘‘p’’), LSODES (solid with ‘‘o’’), sparse RODAS

(dash–dots), RODAS (dash–dots with ‘‘p’’), sparse SDIRK4 (dashed), SDIRK4
(dashed with ‘‘p’’), QSSA (dots with ‘‘x’’), and CHEMEQ (dots with ‘‘o’’).

the work-precision diagram, ‘‘draw’’ an imaginary hori-
zontal line through the desired level of accuracy (say, two
digits) and read from its intersection with the code plots
the necessary CPU time for achieving that level of accu-
racy; the code that gives the leftmost intersection point
will be the fastest for that problem.

• Note the shift in the time scales for the lower diagrams
versus the upper ones. This shows the increase in CPU
time associated with lowering the restart time. This in-
crease affects mainly the performance of implicit methods;
although they are capable of working with very large step
sizes, frequent restarts and the transient regimes force
lower step sizes and a large number of LU decompositions
right after each restart.

• Figure 2 shows nicely why CHEMEQ may be preferred
FIG. 2. Model B. Work-precision diagram. A restart was carried eachto VODE for the tropospheric test problem B when the

1 h (upper diagram) and each 15 min (lower diagram). Sparse VODE
restart time is 15 min or less. The deterioration of perfor- (solid), VODE (solid with ‘‘p’’) LSODES (solid with ‘‘o’’), sparse RODAS
mance with frequent restarts precluded BDF methods to (dash–dots), RODAS (dash–dots with ‘‘p’’), sparse SDIRK4 (dashed), SDIRK4

(dashed with ‘‘p’’), QSSA (dots with ‘‘x’’), and CHEMEQ (dots with ‘‘o’’).be used in 3D air pollution models. Moreover, if the im-
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TABLE VI • Multistep, Runge–Kutta, and standard Rosenbrock
methods all enjoy the property of conserving the linearAverage Speedups Obtained
invariants of the system (for example, they are structurally

Model A Model B mass-conservative). Neither QSSA nor CHEMEQ have this
desirable property.

Dt [s] 900 3600 900 3600
What prevented the so-far implicit methods from being

VODE 2.7 2.6 4.33 4.12 widely used in three-dimensional, comprehensive atmo-
SDIRK4 1.7 2.2 3.25 3.00 spheric models is the fact that they are considered too slow
RODAS 1.4 1.5 2.50 2.90

for this type of application (except for the case when special
hardware is available—see the SMVGEAR code [13], running
on CRAY-YMP). However, we show that this is not the case
when the linear algebra is carefully implemented. One

To summarize, Figs. 1 and 2 show that careful exploita- can enjoy all the above benefits of implicit methods while
tion of sparsity leads to significant improvements in the remaining computationally very competitive.
efficiency of implicit numerical integrators. These improve- The specialized techniques for treating the sparsity de-
ments depend on the size of the problem and on the percent scribed here lead to significant improvements over a gen-
of the total CPU time a particular code spends in solving eral sparse code like LSODES when integrating chemical
linear algebra. In Table VI we report the average speedups systems. For the model problems considered here, the stan-
obtained with the considered codes and problems. dard (full linear algebra) versions of LSODE and VODE per-

The results presented here are for transport time steps form almost similarly in terms of work/accuracy ratio; in
(i.e., restart times) of 15 min (a typical value for regional contrast, sparse VODE is about two times faster than
scale models) and 1 h (a typical value for global scale LSODES.
models). Many models may use a transport time step be- The treatment of sparsity described here is rather conser-
tween 15 min and 1 h. The results in Figs. 1 and 2 point vative, since the off-line analysis of the chemical system
to the conclusion that, if the transport time is sufficiently counts every possible nonzero entry in the Jacobian. Fur-
large, sparse implicit methods outperform dedicated integ- ther improvements seem possible by dynamically approxi-
rators in terms of accuracy/time ratio. mating the Jacobian with a matrix of higher sparsity.

So far, the implicit methods widely used in atmospheric
6. CONCLUSIONS modelling are Gear (BDF) methods. This work shows that

methods from other families, like Runge–Kutta and Ro-
In comprehensive air pollution models it is of interest senbrock, can be equally competitive. We have considered

to replace traditional explicit integrators (QSSA, CHEMEQ) three off-the-shelf codes endowed with the above de-
by more robust implicit integrators. This interest is moti- scribed sparse techniques. Their good performance moti-
vated by the following arguments: vates further search for integrators for atmospheric model-

ling within the class of implicit methods.• The wide range of chemical conditions that are to
Finally, let us mention that this treatment of sparsity isbe simulated can cause numerical problems when explicit

not restricted to atmospheric modelling; it is applicable tointegrators are used; on the other hand, implicit methods
the numerical solution of general chemical systems.offer uniformity in performance for equations of variable

stiffness and difficulty. This uniformity is important as com-
ACKNOWLEDGMENTSprehensive air quality models usually contain chemical con-

ditions ranging from ground level to upper troposphere
The authors thank Jan Verwer for suggesting the use of RODAS in this

and from marine environments to heavily polluted ur- context. This work was supported in part by grants from DOE
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Global and Regional Environmental Research.• For problems involving interphase mass transfer ex-
plicit codes may become unstable; an example of gas–
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